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Abstract. With the aim of developing and implementing a real4ime operating
system with experimental purpose, the development of a component that allows
the debugging and verification of the correct behavior of the interrupt handling
mechanism to its lowest level has been needed. This has been achieved through
the simulation of interrupt requests at the hardware level. This module has been
designed as an independent and reusable component that can be very useful not
only for its original purpose, but also for the development of others embedded
and real time systems. Besides, the component has a great educational value

and as su.ch, it has been used in laboratory practices in the teaching of the
hardware interrupt mechanisms of PC systems.

1. Introduction

Hardware interrupts are an important part of computer architectures. Its purpose is
to provide an efficient way for external devices to get the processor attention.
Debugging interrupt-based systems is a vital subject due to of the inherent complexity
of this kind of system. This complexity comes from the fact that interrupts may
happen at any non predictable time, and can happen some of them at the same time.

Interrupt hardware assigns to each Interrupt Request Line (IRQ) a default static
priority order. When an interrupt occurs, the task executed by the processor at that
instant is interrupted. Execution control is transferred to the Interrupt Service Routine
(ISR) assigned to the signaled IRQ line. While this routine is being executed, interrupt
request lines with lower priority are disabled. An ISR can be interrupted only by a
higher priority IRQ. Once served all IRQs, the interrupted task is resumed.

Computer systems using Intel processors and compliant with the industry standard
[3], use an interrupt hardware compound by two Programmable Interrupt Controller
(PIC) 8259 chips connected in cascade throw the IRQ2 line of the first 8259. This
configuration provides 16 IRQ lines (JRQO...IRQ15).

As part of the development of a Real-Time Operating System (RTOS) with special
features concerning interrupt handling, the development of a component that allows
for simulation of interrupt requests at the hardware level in a controlled way was
needed. With this component we were able of debugging, testing, tuning and
verification of the correct behavior of the interrupt handling mechanism. In spite of
the existence of many low level debuggers [ 14], we did not find any debugging tool
with the required features to accomplish this task.
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The main contribution of this work is the design of a module that allows the issue
of hardware IRQs in any point of the code controlled by software. This avoids one of
the greatest problems of interrupt-based systems: interrupt asynchrony. Furthermore,
after the code is properly instrumented. the change of the sequence of interrupt
request (test cases) is possible without further code modification. The m_odl_lle is an
independent and reusable component that can be very useful not only to its intended
purpose. but on the development process of others embedded and real-time systems.

The rest of this paper is organized as follow: Section 2 summarizes the novel
features of the experimental RTOS that bring us to the need of this work; as well as,
presents a brief survey of the related recent works. Section 3 explains the component
design. Section 4 present a test case showing the way our component can be used.
Finally, section 5 outlines the conclusion of our work.

2. Motivation for this work

This work is part of the development of the Portable and Adaptable Real-Time and
Embedded Microkernel Operating System (PARTEMOS) [10]. This is an
experimental microkernel being developed for experimenting novel interrupt and
exception handling schemes for real-time and embedded systems [7, 9, 8].

2.1. Interrupt Handling in PARTEMOS

PARTEMOS presents some interesting special features, but for the purpose of this
work we will only concentrate on those regarding its interrupt handling. The system
transforms interrupts in signals operations over a semaphore [1], allowing the tasks to
synchronize with interrupts through wait() operations on the semaphore associated
with an IRQ line. In this way, PARTEMOS hides the (not desirable) interrupts
asynchrony in the decpest part of the system. With this approach an IRQ can be seen
as a “hardware task” that send a signal through its associated semaphore.

With the purpose of making the system portable, those aspects depending on the
hardware have been located in the lowest layer named Hardware Abstraction Layer
(HAL). An important component of this HAL is the INTerrupt HAL (INTHAL) which
isolates the rest of the kernel from the interrupt hardware, increasing the portability of
the system. This layer presents the following specific features:

o Interrupts priorities do not map directly to default interrupt priorities assigned

by the hardware. Hardware interrupt priorities can be rearranged as needed.

e Both interrupts and task are within the same priority space. Differently from
most know systems where interrupts always have higher priorities than task,
PARTEMOS allows tasks and interrupt priorities to be intermixed.

The implementation of these features has made the INTHAL a very complex layer,
because the offered behavior is very far from that provided by the hardware. To
achieve a correct implementation of this virtual interrupt controller, we need a
component that eases its debugging. Specifically, we need a component that allows us
to generate interrupts in a controlled way. In addition, this component must be
flexible enough to build a wide set of test cases.
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2.1. Related Works

Bug finding in interrupt driven code is one of the most complex and time
consuming task of the overall development process of embedded systems. Recently,
the general issue of making bug free interrupt driven code has been faced in different
ways. In [15] a method for identify all possible sequences of execution of code in
presence of interrupts is proposed, them standard sequential testing techniques can be
used. A source code transformation technique presented in [12] turns interrupt-driven
code into semantically equivalent thread-based code for checking with standard
thread verifier. In [3] a technique for grouping code block for an effective use of
model checking to analyze the behavior of interrupt-dependent programs was
presented. The work in [4] presents an extension to Petri nets for modeling interrupts.
Some techniques for debugging the interrupt driven embedded systems and for coping
with the asynchronisms of interrupts were presented in [1]. Any of these techniques
can not be used to test low level interrupt management or even the interrupt hardware
itself. Existing development environment or debugging tools do not provide means
for issue hardware interrupt over software control. The tools presented in this paper
can issue hardware interrupt request under software control using a PC hardware trick
similar to the used in at-hot way in [13] to test the interrupt behaviors in Windows
NT. Our component can be used with any conventional debuggers for avoiding the
asynchronisms in interrupt request, letting the repetition of test cases for easy finding
of bugs under debugger control.

3. Component for the generation of hardware interrupts.

The designed component contains functions for interrupt generation on computer
machines based on Intel Pentium processor or higher with a PCI chipset. Generation
of hardware interrupts through software is implemented using an undocumented
feature of these chipsets. Manipulating the interrupt hardware edge/level registers
produce the activation of some IRQ lines [6]. At the beginning of the ISR serving
interrupts generated in this way, the current state of these registers must be restored to
its original state; otherwise, the interrupt signal will be generated continuously. It is
important to emphasize that not all IRQ lines can be activated using this feature.
Furthermore, the interrupts that can be activated this way may vary from machine to
machine. For this reason, our component is divided in two parts. The first one is an
executable program, named DOSCHK, whose purpose is to determine which
interrupts can be generated on the specific machine. The second one is the library
IntrGen.lib that must be linked with the program that needs to generate the hardware
interrupts. This library provides mechanisms to use this feature in a convenient way.

The implementation of the DOSCHK program is simple, and consists in the
manipulation of the interrupt hardware edge/level registers. Then, it must check which
IRQ lines were activated. The library design is a more complicated issue. A
convenient abstraction must be provided to library users, so they can build test cases
in a simple and flexible way. This design is presented in the next subsection.
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3.1. Library Design

The main objective of the library design is to provide users with a convenient
abstraction that eases the building of test cases in a simple and flexible way. This
objective includes several aspects as the introduction of minimal modifications to the
debugged system, the possibility to change easily from a test case to another and the
minimization of details that the person designing the test case must deal with.

A possible solution to this problem is to rely on a function that tries to activate a
given IRQ line passed as parameter. This function must be inserted in key points of
the debugged system. In this way we can determine how this system reacts to
interrupts generated on these points. One advantage of this solution is that it is very
casy to implement. Once selected the key points where interrupts must be generated,
the interrupt sequence to be gencrated can be included directly on the source code or
it can be stored on variables. The first choice causes that it is necessary to modify and
recompile the system code for each test case. so this option is unacceptable. The
second choice is more flexible because it allows users to change the sequence of
generated interrupts changing the variables values. But, it does not allow users to
change the number of interrupts generated on the selected points of the debugged
system. The number of interrupts generated on each point must be known when the
system is modified. This second choice is superior to the first one but is not flexible
enough for our needs. We need to change not only which, but how many interrupts
will be generated on cach of these points, without changing the system code more
than once.

The same problem arises when we need to check the state of the PIC. We could
provide a function for returning its state. Calls to this function must be inserted at
points of the debugged system where this information is needed. The problem results
from the fact that this point might change from one test case to another. The choices
are: modify the systems for each test case (which is not acceptable), or modify the
systems just once and gather this information in all the places that might sometimes
need it. Once again, the inflexibility of this solution is evident.

Another design solution is the definition of objects that encapsulate several
interrupt generation requests. These objects must include a mechanism (methods) to
be notified of which and how many interrupts must be generated in a given moment.
This solution allows users to determine which points of the systems must be modified
just once. Then, build a test case consist just of determining the values used to
initialize this objects. Each object acts as a queue where interrupt generation requests
are stored and provides methods to generate one or more interrupts.

To generate more than one interrupt at a given point we could rely on a method
receiving as parameter how many interrupts must be generated from the queue. This
solution is not flexible because it requires the number of interrupts to be specified on
the source code directly or through variables. None of these choices is effective
because one implies the modification of the system code for each test case, and the
other. that we must control separately the interrupts to generate and the number of
them, complicating the design of the test cases. The best solution is to rely on an
integrated mechanism where an object could determine just from its state which and
how many interrupts generate in each point. Following this reasoning we could
include in the queue some marks to indicate how many interrupts must be generated
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at each point. This solution simplifies the design of test cases because all the aspects
regarding interrupt generation are part of a single object. In the same way, the request
of information about the interrupt controller state can be included in this queue too.
By including these requests on the queue object we gain total control about what

action to execute at each important point of the system: generate a variable number of
interrupts or obtain state information from the interrupt controller.

From this analysis we decide to implement a class representing a command queue.
This queue will contain commands to generate interrupts, show state information of
the interrupt controller and spccial markers to group commands so they could be
executed in a single function call. This class will also contain methods to generate one
or more interrupts. To generate a single interrupt a command is taken from the front
of the queue and a function for activating the corresponding IRQ line is called. To
generate more than one interrupt, commands are taken from the front of the queue and
executed until a marker or the end of the queue is found.

3.2. Library interface

The IntrGen.lib exports the class commmandQueue declared in the header file
IntrGen.h. This class implements the command queue using a structure containing an
array of configurable size where commands are stored. The structure also contains the
indexes of the first and last command on the queue. commmandQueue exports
methods to: (1) Initialize the queue (initCQ()), (2) insert commands in the queue
(postCQ()), (3) execute a single command from the queue (execCQ()), (4) execute
several commands from the queue (execAlICQ())

The initialization function initCQ() takes the maximum number of commands that
the queue can hold and allocate the memory needed for holding the commands array.

The function postCQ() is used to insert commands in the queue. This function
receives a variable number of parameters. The first parameter is the number of
commands to insert and is followed by the command set.

The commands can be executed individually, calling the function execCQ(); or by
groups, calling the function execAlICQ() that executes commands inside a loop. The
command types that can be used are:

Activate an IRQ line

Request information from the PIC

Marker

The first command activates an IRQ line from the PIC; this is exactly what an
external device does when it needs processor attention. These commands are named
adding the interrupt line number to the identifier IRQ. For example: IRQ3, IRQ4, etc.
The second command allows the users to read the PIC state. The 8259 PIC has three
state registers, each one with a bit associated to each IRQ line: the Inferrupt Request
Register (IRR) indicates which IRQ lines are requesting the CPU attention; the
Interrupt Service Register (ISR) shows which interrupts are being serviced; and the
Interrupt Mask Register (IMR) indicate which interrupt lines are disabled. The PIC
information can be read partially (one register at a time) using the CS_IRR, CS_ISR
and CS_IMR commands; or totally using the CS_ALL command.
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Markers provide a mechanism for grouping of commands that could be executed
on a single function call. When the function execAlICQ() is invoked commands from
the queue are executed until a marker or the end of the queue is found. If a marker is
found when the function execCQ() is called, no action is taken.

Besides the commandQueue class, the library exports a function named
disableFLIRQY). This function must be called inside the ISR associated to interrupts
generated through the edge/level register manipulation, for restoring these registers to
its normal state. If this function were not called the IRQ line would continue
generating this interrupt indefinitely.

4. Test Case using the Interrupt Generation Component

As an example, this section presents a test case for studying the il]lerrupt controller
behavior when nested interrupts occurs on the MS-DOS operating system. This
operating system was chosen because it provides unlimited access to hardware. On
the design of the test case, special care has been taken in avoiding the used of
interrupts that might lead to system malfunctioning.

The first step is to determine which interrupts lines can be activated by software
using the DOSCHK program. The generated interrupts might vary from machine to
machine. A 166 MHz Pentium PC running MS-DOS 6.11 produced the output:

Checking interrupts activated through the edge/level registers...

activated IRQs: IRQ3 IRQ4 IRQ5 IRQ7 IRQ1S
masked IRQs: IRQ3 IRQ4 IRQ5 IRQ7

This output shows that IRQ lines IRQ3, IRQ4, IRQ5, IRQ7 and IRQIS5 can be
activated by software. It also shows that IRQ lines IRQ3, IRQ4, IRQ5 and IRQ7 are
masked. Next. we will use lines IRQ3, IRQ4 and IRQ5 to build an example test case.

4.1. Test Case Design

We will design a test case that shows the interrupt controller behavior when nested
interrupts are generated using IRQ lines IRQ3, IRQ4 and IRQS. This test case will
illustrate what happens when an interrupt is being serviced and another one with
higher priority is generated. It also illustrates what happens if a lower priority
interrupt is generated. The test must reflect how the interrupt controller keeps track of
the interrupts being serviced and the interrupt requesting the CPU attention.

The test case that will be implemented is the following: Activate IRQS; while its
ISR is being executed, activate IRQ3. Finally, while the ISR that is serving IRQ3 is in
action, activate IROA.

The first thing to do is modifying the ISR associated to IRQS and IRQ3 because
while they are being executed lines IRQ3 and IRQ4 must be activated respectively.
The ISR associated to IRQ4 also needs to be modified to show interrupt controller
information. The first interrupt is generated from the main program using the function
execAIICQ(). This function is called inside the mentioned ISR to execute commands
from the queue. Listing 1 shows how the modified ISR for IRQ3 looks like.
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void interrupt irq3Handler ()

{
disableFLIRQ(3); // Reset edge/level register
cprintf("Serving Interrupt 3...\r\n");
execAllCQ(&queue) ;

cprintf ("Leaving Interrupt 3...\r\n");
outportb(0x20,0x20); /* Send EOI*/

)

List. 1. Source code for a modified ISR.

The ISR calls the function disableFLIRQ() on its entry to reset the edge/level
registers to its original state. This function takes as parameter the corresponding IRQ
number. Then, the ISR tries to execute commands from the commandQueue object
queue (declared previously in the program) using the function execAIICQ(). Once
executed the commands the End Of Interrupt (EOI) signal must be sent to the
interrupt controller. On entry and exit of the ISR, some messages are printed to help
keep track of the execution flow.

main program ISR IRQ5 ISR IRQ3 ISR IRQ4

]_ 1: IRQ5 ]_

s

Fig. 1. Sequence diagram showing the expected execution flow. Arrows indicates execution
control transfers when commands are executed. Markers are not shown in the diagram.

The hardest part of the process is choosing the right commands to achieve the
expected interrupt sequence (Figure 1). The first action is activating line IRQS5, so this
must the first command in the queue. This command is executed from the main()
function. The next command activates IRQ3, in this way we can observe how the
interrupt hardware behaves when a higher priority interrupt line is activated while a
lower priority line is being served. In this case the ISR associated with IRQ3 must be
executed immediately. The third command is IRQ4, so we can observe what happens
when a lower priority interrupt line is activated while a higher priority one is being
served. This request must wait until all interrupts with higher priority have been
served. At this point the state of the interrupt controller is shown (CS_ALL). to take a
look at the way the controller knows which lines are being served and which are
requesting attention. The next command in the queue is a marker. This marker ends
the execution of the function execAlICQ() inside the IRQ3 ISR. Once finished the
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execution of this ISR the line IRQ4 must be served because its priority is higher than
that of IRQS. In this point we read the interrupt controller state once again (CS_ALL)
and insert another marker to end up IRQ4 ISR execution. Then, we arc back in IRQS
ISR, now we can insert a marker to end up execution or just insert none because we
are already at the end of the queue, so we will finish execution anyway. Once finished
the IRQS5 ISR we return to the main() function.

4.2. Test Case Implementation

First, the source code of the program must be written (Listing 2). This source code
must be compiled and linked with the IntrGen.lib library obtaining an executable file.

/+ IntrTest.c: Test case for the interrupt hardware */
#include “IntrGen.h”

quene declaration*/

/% TerRs for IRO3
/* ISRs fecr IRQS,

void main()
{
unsigned int interruptMask;
intHandler oldIntHdler(3];
intHandler newIntHdler[3])={ irg3Handler, irg4Handler,
irqg5Handler }:

readOldHandlers (oldIntHdler); /*
interruptMask = getIMR():;
setIntHandlers (newIntHdler);
setInterruptMask (0x0000);
initCQ(&queue, 10); A

postCQ( &queue,8
,IRQ5, IRQ3,
,CS_ALL
,C_BRK
,CS_ALL
,C_BRK
,CS ALL
execAllCQ(&aueue); " A
setInterruptMask (interruptMask); /7~
setIntHandlers (oldIntHdler); AER

IRQ4

S}

wial L U

List. 2. Test case source code.

The program firstly includes the IntrGen.h header file. Next, a commandQueue
object named queue is declared and the modified ISR for the used interrupt lines are
defined. On entry, main() save the addresses of the original ISR that will be replaced
(IRQ3. IRQ4 ¢ IRQS5) and the interrupt controller IMR register. These values are
needed to restore the interrupt mechanism to its original state when the test is over.
Then, we modify the Interrupt Vector Table (IVT) to point to the new ISRs, enable all
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interrupt lines and construct the commandQueue object using the function initCQ().
At this point, we insert the commands for getting the desired sequence (postCQ()) and
the execution is started calling the function execAlICQ(). Once finished the execution
of commands we proceed to restore the IVT and the IMR register to its original state.

4.3. Test Case Execution Analysis.

The program execution produced the following output:

(0) Activating Interrupt 5
Serving Interrupt 5...
(1) Activating Interrupt 3
Serving Interrupt 3...

(2) Activating Interrupt 4
(3) ISR : 0x28

IRR : 0x10

IMR : 0x0
Leaving Interrupt 3...
Serving Interrupt 4...
(5) ISR : 0x30

IRR : 0x0

IMR : 0x0
Leaving Interrupt 4...
(7) ISR @ 0x20

IRR : 0x0

IMR : 0x0
Leaving Interrupt 5...

From this output we can verify if the program execution adjusts to the expected
behavior. The output reflects messages printed each time an interrupt is generated, on
entering or leaving an ISR, and to show the interrupt controller state.

When the first command is executed (command 0) calling execAlICQ() at the
main() function, line IRQ5 is activated. Then, its corresponding ISR takes control
showing a message and calling the function execAlICQ() to activate the IRQ3 line (1)
As we can see from the output, this interrupt is served immediately because of its
higher priority. Inside the IRQ3 ISR line IRQ4 is activated (2), this interrupt is not
served at this point because of its lower priority. This fact can be seen from the
output. The next command executed while IRQ3 line is being served shows the
interrupt controller state (3). The ISR register presents bits 3 and 5 set, reflecting that
interrupt IRQ3 and IRQ5 are being served, which is correct. Register IRR presents bit
4 set, indicating that line IRQ4 is requesting the CPU attention. The IMR register
value is not important in this test case; it keeps the same value all the time. After this,
the next command, a marker (4), finish the execution of function execA/ICQ() in
IRQ3. The marker does not produce any output, but a message is printed when the
ISR end up its execution.

The highest priority interrupt line waiting for attention is IRQ4, so its associated
ISR is executed. This ISR executes the next command that shows the interrupt
controller state once again (5). ISR register reflects that lines IRQ4 and IRQS are
being served. The IRR register shows no line requesting attention. Right here, a
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marker command ends up the command execution inside this ISR (6). At this point
we are back to the ISR serving IRQS. The next command to execute asks the interrupt
controller for information about its state (7). We can see at the output that only IRQ5
is being served. There are no commands left in the queue so after showing a message
execution control is back to the main() function. The program output proves that the
interrupt hardware is working as expected when nested interrupts occur.

5. Conclusion

With this work we have obtained a very useful software component for the debugging
and tuning of interrupt based systems. The main feature of this component is that it
allows the generation of interrupts at the hardware level, but in a synchronous way
under the software control. It is important to highlight that generated interrupts are not
“simulated”, but real hardware interrupts and go through all the PIC logic. As result,
our component can be very useful for debugging and verification of the hardware
interrupt handling mechanism itself; something that can not be done with the current
tools. These tools use to “simulate” hardware interrupts using software interrupts and
therefore, ignoring the interrupt hardware. As an example of the possibilities our
component provides, impossible to achieve with other existent debugging modules,
we can mention its utilization for getting the major temporal characteristics of a real-
time system like the measurement of the interrupt latency without needing additional
hardware. Additionally, the component has been used for teaching the interrupts topic
at the computer architecture undergraduate courses on several computing majors.
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